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Derivatives of the local ballooning growth rate with respect to surface
label, field line label, and ballooning parameter
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Expressions for the derivative of the local ballooning growth rate with respect to surface label, field
line label, and ballooning-parameter are presented. Such expressions lead to increased
computational efficiency for ballooning stability applications. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2193537�
I. INTRODUCTION

For comprehensive ballooning analysis in three-
dimensional �stellarator� systems, an extensive set of bal-
looning eigenvalue calculations is generally required. For
several applications, it is convenient to know how the local
ballooning stability will change as a function of the surface
label, �, the field line label, �, and the angle-like ballooning
parameter, �k. For instance, it is typically the most unstable
field line that sets the stability limit. The derivatives of the
growth rate with respect to �� ,� ,�k� allow efficient algo-
rithms to be applied to search for the most unstable field line,
or to trace out marginal stability boundaries.

A particularly important application is in the ray tracing
problem,1 when results from the local ballooning analysis are
extended to make predictions regarding the global stability.

The standard approach to performing the ray tracing is to
first compute the eigenvalue on a �� ,� ,�k� lattice,2,3 and to
then take the derivatives numerically. This approach has cer-
tain disadvantages. Typically, accuracy is lost when deriva-
tives are taken numerically; the eigenvalue lattice must be
constructed at sufficiently high resolution to ensure that the
interpolation is accurate. Also, this approach does not easily
allow the accuracy of the calculation to be easily improved;
if the ballooning eigenvalue calculation itself is to be refined,
the eigenvalue lattice must be reconstructed.

This article presents an explicit method for calculating
the derivatives. The method is an application of eigenvalue
perturbation analysis. For a small variation in �� ,� ,�k�, the
induced small variation in the ballooning operator may be
determined by differentiating the ballooning coefficients. Us-
ing operator perturbation theory, the induced variation in the
eigenvalue, and thus the eigenvalue derivatives, can then be
determined.

A similar analysis was applied to determine the impact
of variations in both the pressure gradient and shear on bal-
looning stability to predict which configurations would dis-
play the second stability.4,5

In Sec. II, a convenient form for the ballooning equation
is given. In Sec. III, it is shown how variations in the coor-
dinates �� ,� ,�k� affect the coefficients of the ballooning
equation. Operator perturbation theory is then used to deter-

mine the required derivatives. Section IV illustrates how the
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derivative information can be used to increase the accuracy
of eigenvalue lattice interpolation.

II. BALLOONING EQUATION

Using straight field line coordinates �� ,��, the magnetic
field takes the form

B = q � � � �� + �� � �� , �1�

where 2�� is the poloidal magnetic flux and q��� is the
inverse rotational transform �safety factor�. This article shall
use the �� ,�� of Boozer coordinates,6 which allows the co-
variant representation

B = ���,�,�� � � + I��� � � + G��� � � . �2�

Changing the toroidal coordinate from � to �=�−q�, the
magnetic field then becomes

B = �� � �� . �3�

The B ·� operator becomes

B · � = �g−1� �

��
�

�,�
�4�

where the notation ��f /�x�y,z indicates the partial derivative
of f with respect to x, with y and z held constant.

Stability is determined by calculating the growth rate of
a small displacement from an equilibrium. To treat balloon-
ing modes,1 the plasma displacement is written

��x� = �̂�x�exp�iS�x�/� − i	t� �5�

with the wave vector k��S. The ballooning ordering re-
quires k ·B=0. This, with the form of the magnetic field Eq.
�3�, requires the eikonal function to be of the form S
=S�� ,��. The wave vector is then

k = k� � � + k� � � � k���� + q��k � �� , �6�

where the ballooning parameter �k=k� /q�k�. The definition
of �k is consistent with that used by Dewar and Glasser,1 but
here � is retained as the surface label, whereas Dewar and
Glasser use q as the surface label. For incompressible pertur-
bations, � ·�=0, and to lowest order in �, the perturbation

may be written
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�̂�0� = 

B � k

B2k�

+ �B . �7�

The ballooning equation is3

B · �
k2

B2k�
2 B · �
 + 2

B � k · �

B2k�

B � k · �p

B2k�




= − 	2

k2

B2k�
2 
 , �8�

where B2�=���B2 /2+�0p� is the curvature, which may be
written

� = �n � � + �gB � ��/g��. �9�

Ballooning stability is determined by a competition be-
tween the destabilizing influences of pressure gradients in
regions of unfavorable curvature, and the stabilizing influ-
ence of field line bending due to the local shear. Defining the
local shear s by

s = �g
B � ��

g�� · � �
B � ��

g�� , �10�

and the quantity L by

L =
g��

g�� + q��k, �11�

it is observed that

s = �gB · �L . �12�

The quantity L is called the �field line� integrated local shear,
and the ballooning parameter �k appears to play the role of
an integration constant. The integrated local shear may also
be written, using the �� ,�� of Boozer coordinates,

L = − q��� − �k� + Ls, �13�

where −q���−�k� is a secular term that increases along the
field line, and Ls= �Gg��− Ig��� /�gg�� is a function of posi-
tion �� ,� ,��.

The ballooning equation may now be written

	� �

��
�

�,�
P� �

��
�

�,�
+ Q − �R

 = 0, �14�

where the ballooning coefficients are

P��,�,�;�k� = B2/g�� + g��L , �15�

Q��,�,�;�k� = 2p��g�I + qG���n + �gL� , �16�

R��,�,�;�k� = 
�g2P , �17�

and the eigenvalue �=−	2. This form for the ballooning
equation was used by Hegna and Nakajima,7 and is a conve-
nient form for constructing marginal stability diagrams.8,4

For general three-dimensional configurations, the local
ballooning growth rate is a function of the field line, labeled
by � and �, and the ballooning parameter �k:

− 	2 = ���,�,�k� , �18�
and the required first order derivatives satisfy
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�� = � ��

��
�

�,�k

�� + � ��

��
�

�,�k

�� + � ��

��k
�

�,�
��k, �19�

for infinitesimal variations ��, ��, and ��k.
Before proceeding to the operator perturbation theory, it

is convenient to first describe the numerical solution to solv-
ing Eq. �14�. The ballooning equation is efficiently solved
using a finite difference method on a field line grid. The field
line grid ���i ,�i� : i=−N ,N� is given by

�i = i��/N + �k, �20�

�i = � + q�i, �21�

where �� is chosen sufficiently large to contain the mode,
and N determines the resolution of the field line grid. Note
that the field line grid for �i is centered on �k. The equation
to be solved becomes a set of 2N−1 linear equations of the
form

Pi+ 1
2

�

�
i+1 − 
i�
�

−
Pi− 1

2

�

�
i − 
i−1�
�

+ Qi
i = �Ri
i, �22�

where �=�� /N. Here, Qi and Ri are calculated on the full
grid, whereas Pi+1/2 is calculated on the half-grid. This is a
matrix equation, M
=�
, where M is tridiagonal. The largest
eigenvalue and its eigenfunction are then solved using stan-
dard numerical routines.9,10 For the following, it is assumed
that the corresponding eigenvector has also been calculated.
Note that as the ballooning coordinates �� ,� ,�k� are
changed, the field line grid will change.

It is worth noting that this construction guarantees that
the poloidal and toroidal symmetries1

���,� + 2�,�k� = ���,� − 2�q,�k + 2�� = ���,�,�k� �23�

hold, for any finite ��. If the field line grid for �i was not
centered about �k, the eigenvalue symmetry ��� ,�
−2�q ,�k+2��=��� ,� ,�k� may not be preserved numeri-
cally for finite ��.

III. VARIATIONS

It is important to distinguish the different coordinate sys-
tems employed. A point in physical space is given by the
three coordinates �� ,� ,��, whereas the ballooning eigen-
value, �, is a function of �� ,� ,�k�.

On a variation of the ballooning coordinates �� ,� ,�k�,
the physical space coordinates vary, and the ballooning co-
efficients vary. Because the field line grid depends on the
field line, labelled by � ,�, and that the field line grid is
adjusted to remain centered about �k, the physical space co-
ordinates of the field line grid vary according to

��i = �� , �24�

��i = ��k, �25�

��i = �� + q��i�� + q��k. �26�
The variation of the ballooning coefficient, �P, is given by
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�P =
2B�B

g�� −
B2

g��

�g��

g�� + �g��L2 + g��2L�L . �27�

The expressions for �Q and �R take similar forms.
The terms �B and �g��, and terms such as ��n ,��g

which appear in the expression for �Q, take the form

�f = � �f

��
�

�,�
�� + � �f

��
�

�,�
�� + � �f

��
�

�,�
�� , �28�

where f is an arbitrary function of position f = f�� ,� ,��.
Combining this expression with Eqs. �24�–�26�, an expres-
sion for all quantities which are functions of physical space
is given by

�f = 
� �f

��
�

�,�
+ q��� �f

��
�

�,�
��� + � �f

��
�

�,�
��

+ 
� �f

��
�

�,�
+ q� �f

��
�

�,�
���k. �29�

The term �L is slightly different due to the secular term:

�L = − q��� − �k��� + �Ls, �30�

where �Ls is of the form given in Eq. �29�.
The above expressions may be combined and �P is writ-

ten

�P = ���P��,�k
�� + ���P��,�k

�� + ���k
P��,���k, �31�

similarly for �Q and �R. The full expressions for ���P��,�k
,

etc. are quite lengthy. The expression for �Q involves the
spatial derivatives of the normal and geodesic curvatures, �n

and �g. Using the �� ,�� of Boozer coordinates, the curvatures
are written

�n =
1

B2

�

��

B2

2
+ �0p� +

��q��
�g + ��

�g�
2�g�I + qG�

+
�Gg�� − Ig���

�gg��

�G��
�g − I��

�g�
2�g�I + qG�

, �32�

�g =
I��

�g − G��
�g

2�g�I + qG�
, �33�

where the derivatives are given by ����� /����,�, ���

�� /����,�. The radial derivative of the normal curvature will
involve the second radial derivative of the magnetic field
strength, B. The second radial derivatives of the q profile,
pressure, and various metric quantities will also be required
in the ultimate calculation of the eigenvalue derivatives.

Upon variation, the ballooning equation is written

	� �

��
�

�,�
�P + �P�� �

��
�

�,�
+ �Q + �Q�
�
 + �
�

= �� + ����R + �R��
 + �
� . �34�

Using the Hermitian property of the operators, the de-
rivatives of the eigenvalue are then given by expressions of

the form
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� ��

��
�

�,�k

= �
�� �

��
�

�,�
���P��,�k

� �

��
�

�,�

+ ���Q��,�k
− ����R��,�k

�
� ,

where the bracket notation indicates the normalized inner
product �
�f �
�=�
f
d� /�
R
d�.

IV. APPLICATION

To illustrate the benefits of direct calculation of the de-
rivatives over the alternatives, an equilibrium relevant to the
LHD stellarator has been examined. The equilibrium itself is
calculated using the VMEC code, and the equilibrium is then
mapped to Boozer coordinates. The determination of the de-
rivatives described above has been implemented numerically.

This section will make some comparisons between the
construction of the ballooning eigenvalue derivatives pre-
sented in this article to the determination of the derivatives
provided by a standard ballooning code—that is in this con-
text, a ballooning code that only calculates the ballooning
eigenvalue.

Consider the determination of the eigenvalues at an ar-
bitrary point in ballooning space �� ,� ,�k�. The direct
method requires only one evaluation: the eigenvalue and the
derivatives are returned simultaneously. Also, the accuracy
of the derivatives is consistent with the accuracy of the ei-
genvalue, both being determined by the resolution of the
field line grid as described in Eqs. �20� and �21�. Note that to
determine the derivatives, additional Fourier summations are
required to determine the variation in the ballooning coeffi-
cients. This is an additional computational burden, but a
modest one and the computational cost of determining the
eigenvalue and its derivatives is only slightly greater than
determining the eigenvalue alone.

Using a ballooning code that only returns the eigenvalue,
the derivatives may be determined

� ��

��
�

�,�k

=
��� + h,�,�k� − ���,�,�k�

h
+ O�h� , �35�

and similarly for �� /�� and �� /��k. This requires 4 eigen-
value calculations to determine the eigenvalue and its three
derivatives. Furthermore, the finite-difference determination
of the derivatives involves the finite-difference errors O�h�.

The standard approach to following the ray trajectories is
to first compute the eigenvalue on a three-dimensional eigen-
value grid. The eigenvalue and its derivatives at any point
can then be obtained by interpolation, and the ray trajectories
can then be quickly determined using the standard o.d.e. in-
tegration. Using the derivative information, the accuracy of
the grid interpolation can be substantially improved.

Consider the one-dimensional interpolation case, with a
two-point interpolation procedure. Between adjacent points,
using only the eigenvalue information, only a linear interpo-
lation is possible. This is second-order accurate in the eigen-
value, and first-order accurate for the derivative. Using the
derivative information, a cubic interpolation is possible, and

this is fourth-order accurate for the eigenvalue and third-
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order accurate for the derivative. Higher order interpolation
schemes are made possible by using additional data points,
but always the accuracy of the interpolation can be improved
by using the derivative information.

In three dimensions, a tricubic interpolation scheme11

with C1 continuity, has been implemented

� = �
i=0

3

�
j=0

3

�
k=0

3

ai,j,kx
iyjzk, �36�

where x ,y ,z are local interpolation variables, e.g., x= ��
−�0� / ��1−�0� where �0 ,�1 are the adjacent bounding � val-
ues. The parameters ai,j,k are chosen to match the eigenvalue
and its derivatives at each corner of each grid cell. This
interpolation gives fourth order accuracy in the grid spacing
for the eigenvalue, and third order accuracy for the eigen-

FIG. 1. Scaling of the eigenvalue derivative interpolation error �crosses�
with grid spacing h for the example LHD configuration; the third order
accuracy �indicated by the dashed line� is confirmed.

FIG. 2. �Color online� Eigenvalue isosurfaces for the example LHD con-

figuration, showing topologically cylindrical and spherical isosurfaces.
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value derivatives. This error scaling has been confirmed, as
shown in Fig. 1, for the example LHD configuration. For a
given grid resolution, the interpolation error is calculated as
the three-dimensional sum of the discrepancy between the
interpolated eigenvalue at grid cell midpoint, and the exact
eigenvalue. Some example eigenvalue isosurfaces are shown
in Fig. 2 for this case. As can be seen, the structure of the
eigenvalue in the �� ,� ,�k� space is quite detailed, and thus
this configuration provides a challenging test of the interpo-
lation procedure. Even for quite crude grid resolutions, with
only 24 grid points in each dimension, the interpolation er-
rors for the eigenvalue derivative are about 10−3.

Higher order interpolation schemes are also possible in
three dimensions, and again the use of the derivatives allows
the accuracy of the interpolation to be increased. This sig-
nificantly reduces the computational burden by allowing ac-
curate interpolation based on relatively coarse eigenvalue
grids.

V. DISCUSSION

The use of operator perturbation theory is a computa-
tionally efficient approach to determining the eigenvalue de-
rivatives with respect to the ballooning coordinates
�� ,� ,�k�. In the context of the ray tracing problem, it allows
the ray trajectories to be determined directly, without the
initial step of calculating the eigenvalue on a three-
dimensional grid of sufficient resolution to provide the accu-
rate, and smooth, derivatives required for the o.d.e. integra-
tion.

In some ray tracing contexts, it may still be convenient
to first calculate the eigenvalues on a three-dimensional grid.
In this case, the use of the derivatives allows a higher-order
interpolation procedure to be implemented.

It not required to use Boozer coordinates for ballooning
stability calculations, though from an analytic viewpoint the
use of Boozer coordinates does simplify the analysis. For
numerical calculations it is computationally efficient to use
so-called VMEC coordinates.10 It is possible to extend the
operator perturbation theory to arbitrary coordinate systems.

This method of calculating the derivatives has been nu-
merically implemented and shown to agree with a finite-
difference calculation of the derivatives. Application of this
approach to ray tracing and the semiclassical quantization of
ballooning modes in three-dimensional systems is ongoing.

The example equilibrium has been studied in some detail
by Nakajima et al.12 using the global stability code CAS3D.
One goal of this research is to compare the results of the ray
tracing approach for determining global stability to the glo-
bal stability results from a global code. This is not a simple
task in stellarator geometry. The lack of axisymmetry, in gen-
eral, results in chaotic ray trajectories and can lead to singu-
lar global eigenfunctions. An area of current research is the
regularization of this problem by the inclusion of kinetic
effects, in particular finite Larmor radius effects. A recent
paper by McMillan and Dewar13 use semiclassical tech-
niques to analyze this effect, and propose a technique to
determine the marginal stability boundary even when the

rays are chaotic. The quantization of chaotic semiclassical
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rays, including the FLR effects, for a LHD relevant equilib-
rium is beyond the scope of the present article and is left to
future work.
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